Soluciones de impresión 3D
Posventa de automoción
Suministramos resinas que crean piezas impresas con el aspecto y el rendimiento del plástico mecanizado. La alternativa rentable, probada en aplicaciones reales, utilizada en todas las condiciones meteorológicas.
Titan crea piezas de gran precisión dimensional para numerosas aplicaciones de automoción, como paneles y cubiertas.
Magna ha demostrado ser el método más eficaz para fabricar utillajes de tamaño pequeño y mediano para el sector de recambios de automoción. Ha creado cientos de miles de piezas para empresas que normalmente tienen muchos diseños con volúmenes bajos o medios que no merecen ser mecanizados.
Para grandes volúmenes de piezas funcionales, sólo hay una solución, Magna.
Soluciones de impresión 3D
Posventa de automoción
Magna ha demostrado ser el método más eficaz para fabricar utillajes de tamaño pequeño y mediano para el sector de recambios de automoción. Ha creado cientos de miles de piezas para empresas que normalmente tienen muchos diseños con volúmenes bajos o medios que no merecen ser mecanizados.
Suministramos resinas que crean piezas impresas con el aspecto y el rendimiento del plástico mecanizado. La alternativa rentable, probada en aplicaciones reales, utilizada en todas las condiciones meteorológicas.
Titan crea piezas de gran precisión dimensional para numerosas aplicaciones de automoción, como paneles y cubiertas.
Para grandes volúmenes de piezas funcionales, sólo hay una solución, Magna.
Printing large complex automotive panels for Magna International
Magna International needed 10 large containers to hold electrical components for test vehicles. 3D printing was the only option, but large format laser SLA was too expensive, too slow and the parts wouldn’t be functional in use. This is the story of some of the largest parts to be printed free radically, accurate in the z axis at +/- 0.065% average, printed on Liquid Crystal Titan.
LUMotorsport
Desde 2003, LUMotorsport ha representado a la Universidad de Loughborough en eventos de Formula Student en todo el mundo. El evento principal es Formula Student UK, que se celebra en Silverstone cada año. El año pasado compitieron más de 60 equipos del Reino Unido y de todo el mundo. El equipo también ha competido en Austria, Chequia, Alemania y Hungría.
En 2023, LUMotorsport se puso en contacto con Photocentric para utilizar su experiencia en impresión 3D. Trabajando juntos, han impreso múltiples piezas aerodinámicas, herramientas compuestas y cajas de conexiones eléctricas estándar del deporte del motor para el coche de este año, utilizando la impresora 3D Liquid Crystal Magna que ofrece lo siguiente:
- Piezas de gran tamaño
- Geometría compleja no plana
- Gran relación altura/área de contacto del lecho
- Acabado superficial limpio para minimizar la fricción con la piel
- Mayor libertad de diseño para el utillaje de carbono sin las limitaciones del bloque de utillaje de mecanizado.
- Insertos de menor peso para superficies aerodinámicas en comparación con los anteriores de aluminio
LUMotorsport
Desde 2003, LUMotorsport ha representado a la Universidad de Loughborough en eventos de Formula Student en todo el mundo. El evento principal es Formula Student UK, que se celebra en Silverstone cada año. El año pasado compitieron más de 60 equipos del Reino Unido y de todo el mundo. El equipo también ha competido en Austria, Chequia, Alemania y Hungría.
En 2023, LUMotorsport se puso en contacto con Photocentric para utilizar su experiencia en impresión 3D. Trabajando juntos, han impreso múltiples piezas aerodinámicas, herramientas compuestas y cajas de conexiones eléctricas estándar del deporte del motor para el coche de este año, utilizando la impresora 3D Liquid Crystal Magna que ofrece lo siguiente:
- Piezas de gran tamaño
- Geometría compleja no plana
- Gran relación altura/área de contacto del lecho
- Acabado superficial limpio para minimizar la fricción con la piel
- Mayor libertad de diseño para el utillaje de carbono sin las limitaciones del bloque de utillaje de mecanizado.
- Insertos de menor peso para superficies aerodinámicas en comparación con los anteriores de aluminio
Panel de caravana Hymer
Impresión de prototipos a gran escala
El VisionVenture, creado conjuntamente por BASF e HYMER, es un prototipo casi de producción del futuro de las furgonetas. Los paneles de la carrocería del prototipo se imprimieron con la impresora Titan de Liquid Crystal .
Panel de caravana Hymer
Impresión de prototipos a gran escala
El VisionVenture, creado conjuntamente por BASF e HYMER, es un prototipo casi de producción del futuro de las furgonetas. Los paneles de la carrocería del prototipo se imprimieron con la impresora Titan de Liquid Crystal .
Panel Hymer
Imprimir detalles:
Impresora: Liquid Crystal Titan
Dimensiones: 920 (ancho) x 470 (alto) x 600mm (largo)
Tiempo de impresión: 40 horas
Resolución: 100µm
Volumen de Resina: 800g
Resina: Daylight Hard Black
Coste por unidad: 48,96
Step 1 – Designing for Additive
Although the design supplied by Magna International had taken into account guidelines for AM, design optimization was still needed. The original design would have warped in production but Photocentric was given design freedom on the non-facing surfaces given that we met the external dimensions and were within tolerance on a total of 18 critical measurements. A gyroid infill was added with a 1.2mm by 12mm structure. A design correction for shrinkage of 0.5% in x:y and 0.1% in z was applied to achieve tolerance.
Step 2 – Supporting to achieve part tolerance
The part was orientated at an angle of 60 degrees to negate any sudden changes in force while printing. The support network was generated from the auto support function on Voxel Dance software for Photocentric. Support density was reduced to the minimum necessary to reduce support resin and work in sanding artefacts. Support tips were optimized at 0.6mm to deliver compromise between meeting the minimum level of physical restraint for the part and ease of support removal.
Cut out shapes will distort as the forces change when the open panel is reached. For dimensional accuracy in cut out shapes, you can insert supports or, easier is to insert thin 3mm blanking plates with a few attachment points.
Step 3 – Printing
The material property requirement for the enclosure was met by BASF EPD2006 resin.
The supported file was loaded onto a Liquid Crystal Titan.
The file was printed in 100my layers, taking 68 hours (7223 layers). The part weighed 4591g with 2062g of supports.
Step 4 – Wash process
By the end of the print, the platform had dripped free from excess resin, returning it to the tank. The platform was transferred via the Photocentric platform transfer to the Photocentric Wash XL unit. The door was locked, and the wash pump engaged, and the platform set to continuous rotation. The operator used the wash wand to spray a recirculating solution of Photocentric Resin Cleaner 30 into all areas of the part. Full cleaning took 15 minutes. At the end of the wash cycle, the sump of cleaning fluid was drained back to the IBC of wash fluid and the pump was switched to rinse. The part was rinsed with water to remove all remaining cleaning fluid for 5 mins. As remaining water can leave white marks on the parts, the air wand was applied for a couple of minutes.
Step 5 – Cure process
The platform transfer was then used to move the platform to the Photocentric Cure XL. The platform was rotated continuously to ensure even cure. It was fully post-processed with a combination of dual wavelength (405nm and 460nm) high intensity light and 60°C heat for a total of 5 hours.
Step 6 – Support removal
The fine Voxel Dance support tips were easily ripped off the part leaving minor raised artefacts which were then sanded. Total support removal time was 15 mins.
Step 7 – Adding inserts
We chose to sand the part further for approx. 120 mins, using an orbital sander, in order to get the best surface finish. The required inserts were hammered into the recesses. It was spray painted, with a primer and black coat.
Step 8 – Iterative learning
If you have made a similar type of part before, you will know how accurate the part is to CAD. If you are printing a new complex geometry, there may be variances from tolerance or defects, these are measured and then iteratively improved.
Step 1 – Designing for Additive
Although the design supplied by Magna International had taken into account guidelines for AM, design optimization was still needed. The original design would have warped in production but Photocentric was given design freedom on the non-facing surfaces given that we met the external dimensions and were within tolerance on a total of 18 critical measurements. A gyroid infill was added with a 1.2mm by 12mm structure. A design correction for shrinkage of 0.5% in x:y and 0.1% in z was applied to achieve tolerance.
Step 2 – Supporting to achieve part tolerance
The part was orientated at an angle of 60 degrees to negate any sudden changes in force while printing. The support network was generated from the auto support function on Voxel Dance software for Photocentric. Support density was reduced to the minimum necessary to reduce support resin and work in sanding artefacts. Support tips were optimized at 0.6mm to deliver compromise between meeting the minimum level of physical restraint for the part and ease of support removal.
Cut out shapes will distort as the forces change when the open panel is reached. For dimensional accuracy in cut out shapes, you can insert supports or, easier is to insert thin 3mm blanking plates with a few attachment points.
Step 3 – Printing
The material property requirement for the enclosure was met by BASF EPD2006 resin.
The supported file was loaded onto a Liquid Crystal Titan.
The file was printed in 100my layers, taking 68 hours (7223 layers). The part weighed 4591g with 2062g of supports.
Step 4 – Wash process
By the end of the print, the platform had dripped free from excess resin, returning it to the tank. The platform was transferred via the Photocentric platform transfer to the Photocentric Wash XL unit. The door was locked, and the wash pump engaged, and the platform set to continuous rotation. The operator used the wash wand to spray a recirculating solution of Photocentric Resin Cleaner 30 into all areas of the part. Full cleaning took 15 minutes. At the end of the wash cycle, the sump of cleaning fluid was drained back to the IBC of wash fluid and the pump was switched to rinse. The part was rinsed with water to remove all remaining cleaning fluid for 5 mins. As remaining water can leave white marks on the parts, the air wand was applied for a couple of minutes.
Step 5 – Cure process
The platform transfer was then used to move the platform to the Photocentric Cure XL. The platform was rotated continuously to ensure even cure. It was fully post-processed with a combination of dual wavelength (405nm and 460nm) high intensity light and 60°C heat for a total of 5 hours.
Step 6 – Support removal
The fine Voxel Dance support tips were easily ripped off the part leaving minor raised artefacts which were then sanded. Total support removal time was 15 mins.
Step 7 – Adding inserts
We chose to sand the part further for approx. 120 mins, using an orbital sander, in order to get the best surface finish. The required inserts were hammered into the recesses. It was spray painted, with a primer and black coat.
Step 8 – Iterative learning
If you have made a similar type of part before, you will know how accurate the part is to CAD. If you are printing a new complex geometry, there may be variances from tolerance or defects, these are measured and then iteratively improved.