Solutions d'impression 3D
Marché secondaire de l'automobile
Nous fournissons des résines qui permettent de créer des pièces imprimées dont l'aspect et les performances sont identiques à ceux des pièces en plastique usinées. L'alternative rentable, éprouvée dans des applications réelles, utilisée dans toutes les conditions météorologiques.
Titan crée de grandes pièces aux dimensions précises pour de nombreuses applications automobiles, telles que des panneaux et des couvercles.
Magna s'est avéré être la méthode la plus efficace pour fabriquer des montages de petite et moyenne taille pour le secteur du marché secondaire de l'automobile. Il a permis de créer des centaines de milliers de pièces pour des entreprises qui disposent généralement d'un grand nombre de modèles avec des volumes faibles à moyens qui ne nécessitent pas d'outillage.
Pour les grands volumes de pièces fonctionnelles, il n'y a qu'une seule solution, Magna.
Solutions d'impression 3D
Marché secondaire de l'automobile
Magna s'est avéré être la méthode la plus efficace pour fabriquer des montages de petite et moyenne taille pour le secteur du marché secondaire de l'automobile. Il a permis de créer des centaines de milliers de pièces pour des entreprises qui disposent généralement d'un grand nombre de modèles avec des volumes faibles à moyens qui ne nécessitent pas d'outillage.
Nous fournissons des résines qui permettent de créer des pièces imprimées dont l'aspect et les performances sont identiques à ceux des pièces en plastique usinées. L'alternative rentable, éprouvée dans des applications réelles, utilisée dans toutes les conditions météorologiques.
Titan crée de grandes pièces aux dimensions précises pour de nombreuses applications automobiles, telles que des panneaux et des couvercles.
Pour les grands volumes de pièces fonctionnelles, il n'y a qu'une seule solution, Magna.
Printing large complex automotive panels for Magna International
Magna International needed 10 large containers to hold electrical components for test vehicles. 3D printing was the only option, but large format laser SLA was too expensive, too slow and the parts wouldn’t be functional in use. This is the story of some of the largest parts to be printed free radically, accurate in the z axis at +/- 0.065% average, printed on Liquid Crystal Titan.
LUMotorsport
Depuis 2003, LUMotorsport représente l'université de Loughborough lors des compétitions de Formula Student dans le monde entier. Le principal événement est Formula Student UK, qui se tient chaque année à Silverstone. L'année dernière, plus de 60 équipes du Royaume-Uni et du monde entier y ont participé. L'équipe a également participé à des compétitions en Autriche, en République tchèque, en Allemagne et en Hongrie.
En 2023, LUMotorsport a contacté Photocentric pour utiliser son expertise en matière d'impression 3D. Ensemble, ils ont imprimé de nombreuses pièces aérodynamiques, des outils composites et des boîtes de jonction électrique conformes aux normes du sport automobile pour la voiture de cette année, à l'aide de l'imprimante 3D Magna de Liquid Crystal qui offre les éléments suivants :
- Pièces à grande échelle
- Géométrie complexe et non plane
- Rapport élevé entre la hauteur et la surface de contact du lit
- Finition de surface propre pour minimiser le frottement de la peau
- Liberté de conception accrue pour l'outillage en carbone sans les contraintes du bloc d'outillage d'usinage
- Inserts plus légers pour les surfaces aérodynamiques par rapport aux anciens inserts en aluminium
LUMotorsport
Depuis 2003, LUMotorsport représente l'université de Loughborough lors des compétitions de Formula Student dans le monde entier. Le principal événement est Formula Student UK, qui se tient chaque année à Silverstone. L'année dernière, plus de 60 équipes du Royaume-Uni et du monde entier y ont participé. L'équipe a également participé à des compétitions en Autriche, en République tchèque, en Allemagne et en Hongrie.
En 2023, LUMotorsport a contacté Photocentric pour utiliser son expertise en matière d'impression 3D. Ensemble, ils ont imprimé de nombreuses pièces aérodynamiques, des outils composites et des boîtes de jonction électrique conformes aux normes du sport automobile pour la voiture de cette année, à l'aide de l'imprimante 3D Magna de Liquid Crystal qui offre les éléments suivants :
- Pièces à grande échelle
- Géométrie complexe et non plane
- Rapport élevé entre la hauteur et la surface de contact du lit
- Finition de surface propre pour minimiser le frottement de la peau
- Liberté de conception accrue pour l'outillage en carbone sans les contraintes du bloc d'outillage d'usinage
- Inserts plus légers pour les surfaces aérodynamiques par rapport aux anciens inserts en aluminium
Panneau pour caravane Hymer
Impression de pièces prototypes à grande échelle
Le VisionVenture, créé conjointement par BASF et HYMER, est un aperçu proche de la production de l'avenir des fourgonnettes. Les panneaux de carrosserie du prototype ont été imprimés à l'aide de l'imprimante Titan Liquid Crystal .
Panneau pour caravane Hymer
Impression de pièces prototypes à grande échelle
Le VisionVenture, créé conjointement par BASF et HYMER, est un aperçu proche de la production de l'avenir des fourgonnettes. Les panneaux de carrosserie du prototype ont été imprimés à l'aide de l'imprimante Titan Liquid Crystal .
Panneau Hymer
Détails d'impression :
Imprimante : Liquid Crystal Titan
Dimensions : 920 (L) x 470 (H) x 600mm (L)
Temps d'impression : 40 heures
Résolution : 100µm
Volume de résine : 800g
Résine : Noir dur lumière du jour
Coût unitaire : 48,96 euros
Step 1 – Designing for Additive
Although the design supplied by Magna International had taken into account guidelines for AM, design optimization was still needed. The original design would have warped in production but Photocentric was given design freedom on the non-facing surfaces given that we met the external dimensions and were within tolerance on a total of 18 critical measurements. A gyroid infill was added with a 1.2mm by 12mm structure. A design correction for shrinkage of 0.5% in x:y and 0.1% in z was applied to achieve tolerance.
Step 2 – Supporting to achieve part tolerance
The part was orientated at an angle of 60 degrees to negate any sudden changes in force while printing. The support network was generated from the auto support function on Voxel Dance software for Photocentric. Support density was reduced to the minimum necessary to reduce support resin and work in sanding artefacts. Support tips were optimized at 0.6mm to deliver compromise between meeting the minimum level of physical restraint for the part and ease of support removal.
Cut out shapes will distort as the forces change when the open panel is reached. For dimensional accuracy in cut out shapes, you can insert supports or, easier is to insert thin 3mm blanking plates with a few attachment points.
Step 3 – Printing
The material property requirement for the enclosure was met by BASF EPD2006 resin.
The supported file was loaded onto a Liquid Crystal Titan.
The file was printed in 100my layers, taking 68 hours (7223 layers). The part weighed 4591g with 2062g of supports.
Step 4 – Wash process
By the end of the print, the platform had dripped free from excess resin, returning it to the tank. The platform was transferred via the Photocentric platform transfer to the Photocentric Wash XL unit. The door was locked, and the wash pump engaged, and the platform set to continuous rotation. The operator used the wash wand to spray a recirculating solution of Photocentric Resin Cleaner 30 into all areas of the part. Full cleaning took 15 minutes. At the end of the wash cycle, the sump of cleaning fluid was drained back to the IBC of wash fluid and the pump was switched to rinse. The part was rinsed with water to remove all remaining cleaning fluid for 5 mins. As remaining water can leave white marks on the parts, the air wand was applied for a couple of minutes.
Step 5 – Cure process
The platform transfer was then used to move the platform to the Photocentric Cure XL. The platform was rotated continuously to ensure even cure. It was fully post-processed with a combination of dual wavelength (405nm and 460nm) high intensity light and 60°C heat for a total of 5 hours.
Step 6 – Support removal
The fine Voxel Dance support tips were easily ripped off the part leaving minor raised artefacts which were then sanded. Total support removal time was 15 mins.
Step 7 – Adding inserts
We chose to sand the part further for approx. 120 mins, using an orbital sander, in order to get the best surface finish. The required inserts were hammered into the recesses. It was spray painted, with a primer and black coat.
Step 8 – Iterative learning
If you have made a similar type of part before, you will know how accurate the part is to CAD. If you are printing a new complex geometry, there may be variances from tolerance or defects, these are measured and then iteratively improved.
Step 1 – Designing for Additive
Although the design supplied by Magna International had taken into account guidelines for AM, design optimization was still needed. The original design would have warped in production but Photocentric was given design freedom on the non-facing surfaces given that we met the external dimensions and were within tolerance on a total of 18 critical measurements. A gyroid infill was added with a 1.2mm by 12mm structure. A design correction for shrinkage of 0.5% in x:y and 0.1% in z was applied to achieve tolerance.
Step 2 – Supporting to achieve part tolerance
The part was orientated at an angle of 60 degrees to negate any sudden changes in force while printing. The support network was generated from the auto support function on Voxel Dance software for Photocentric. Support density was reduced to the minimum necessary to reduce support resin and work in sanding artefacts. Support tips were optimized at 0.6mm to deliver compromise between meeting the minimum level of physical restraint for the part and ease of support removal.
Cut out shapes will distort as the forces change when the open panel is reached. For dimensional accuracy in cut out shapes, you can insert supports or, easier is to insert thin 3mm blanking plates with a few attachment points.
Step 3 – Printing
The material property requirement for the enclosure was met by BASF EPD2006 resin.
The supported file was loaded onto a Liquid Crystal Titan.
The file was printed in 100my layers, taking 68 hours (7223 layers). The part weighed 4591g with 2062g of supports.
Step 4 – Wash process
By the end of the print, the platform had dripped free from excess resin, returning it to the tank. The platform was transferred via the Photocentric platform transfer to the Photocentric Wash XL unit. The door was locked, and the wash pump engaged, and the platform set to continuous rotation. The operator used the wash wand to spray a recirculating solution of Photocentric Resin Cleaner 30 into all areas of the part. Full cleaning took 15 minutes. At the end of the wash cycle, the sump of cleaning fluid was drained back to the IBC of wash fluid and the pump was switched to rinse. The part was rinsed with water to remove all remaining cleaning fluid for 5 mins. As remaining water can leave white marks on the parts, the air wand was applied for a couple of minutes.
Step 5 – Cure process
The platform transfer was then used to move the platform to the Photocentric Cure XL. The platform was rotated continuously to ensure even cure. It was fully post-processed with a combination of dual wavelength (405nm and 460nm) high intensity light and 60°C heat for a total of 5 hours.
Step 6 – Support removal
The fine Voxel Dance support tips were easily ripped off the part leaving minor raised artefacts which were then sanded. Total support removal time was 15 mins.
Step 7 – Adding inserts
We chose to sand the part further for approx. 120 mins, using an orbital sander, in order to get the best surface finish. The required inserts were hammered into the recesses. It was spray painted, with a primer and black coat.
Step 8 – Iterative learning
If you have made a similar type of part before, you will know how accurate the part is to CAD. If you are printing a new complex geometry, there may be variances from tolerance or defects, these are measured and then iteratively improved.