Soluzioni di stampa 3D
Aftermarket automobilistico
Forniamo resine che creano parti stampate che hanno l'aspetto e le prestazioni della plastica stampata. L'alternativa economica, collaudata in applicazioni reali e utilizzata in tutte le condizioni atmosferiche.
Titan crea pezzi di grandi dimensioni e precisione per numerose applicazioni automobilistiche, come pannelli e coperture.
Magna si è dimostrato il metodo più efficace per realizzare attrezzature di piccole e medie dimensioni per il settore dell'aftermarket automobilistico. Ha creato centinaia di migliaia di pezzi per aziende che hanno molti progetti con volumi medio-bassi che non meritano di essere lavorati.
Per i grandi volumi di pezzi funzionali c'è solo una soluzione, Magna.
Soluzioni di stampa 3D
Aftermarket automobilistico
Magna si è dimostrato il metodo più efficace per realizzare attrezzature di piccole e medie dimensioni per il settore dell'aftermarket automobilistico. Ha creato centinaia di migliaia di pezzi per aziende che hanno molti progetti con volumi medio-bassi che non meritano di essere lavorati.
Forniamo resine che creano parti stampate che hanno l'aspetto e le prestazioni della plastica stampata. L'alternativa economica, collaudata in applicazioni reali e utilizzata in tutte le condizioni atmosferiche.
Titan crea pezzi di grandi dimensioni e precisione per numerose applicazioni automobilistiche, come pannelli e coperture.
Per i grandi volumi di pezzi funzionali c'è solo una soluzione, Magna.

Printing large complex automotive panels for Magna International
Magna International needed 10 large containers to hold electrical components for test vehicles. 3D printing was the only option, but large format laser SLA was too expensive, too slow and the parts wouldn’t be functional in use. This is the story of some of the largest parts to be printed free radically, accurate in the z axis at +/- 0.065% average, printed on Liquid Crystal Titan.
LUMotorsport
Dal 2003, la LUMotorsport rappresenta l'Università di Loughborough agli eventi di Formula Student in tutto il mondo. L'evento principale è la Formula Student UK, che si tiene ogni anno a Silverstone. L'anno scorso hanno partecipato oltre 60 squadre provenienti dal Regno Unito e da tutto il mondo. Il team ha gareggiato anche in Austria, Cechia, Germania e Ungheria.
Nel 2023, LUMotorsport si è rivolta a Photocentric per utilizzare la sua esperienza nella stampa 3D. Lavorando insieme, hanno stampato diverse parti aerodinamiche, utensili in materiale composito e scatole di giunzione elettrica standard per il motorsport per la vettura di quest'anno, utilizzando la stampante 3D Liquid Crystal Magna che offre quanto segue:
- Pezzi di grandi dimensioni
- Geometria complessa e non planare
- Ampio rapporto tra altezza e area di contatto del letto
- Finitura superficiale pulita per ridurre al minimo l'attrito della pelle
- Maggiore libertà di progettazione per gli utensili in carbonio senza i vincoli del blocco utensili per la lavorazione.
- Inserti di peso inferiore per le superfici aerodinamiche rispetto ai precedenti in alluminio
LUMotorsport
Dal 2003, la LUMotorsport rappresenta l'Università di Loughborough agli eventi di Formula Student in tutto il mondo. L'evento principale è la Formula Student UK, che si tiene ogni anno a Silverstone. L'anno scorso hanno partecipato oltre 60 squadre provenienti dal Regno Unito e da tutto il mondo. Il team ha gareggiato anche in Austria, Cechia, Germania e Ungheria.
Nel 2023, LUMotorsport si è rivolta a Photocentric per utilizzare la sua esperienza nella stampa 3D. Lavorando insieme, hanno stampato diverse parti aerodinamiche, utensili in materiale composito e scatole di giunzione elettrica standard per il motorsport per la vettura di quest'anno, utilizzando la stampante 3D Liquid Crystal Magna che offre quanto segue:
- Pezzi di grandi dimensioni
- Geometria complessa e non planare
- Ampio rapporto tra altezza e area di contatto del letto
- Finitura superficiale pulita per ridurre al minimo l'attrito della pelle
- Maggiore libertà di progettazione per gli utensili in carbonio senza i vincoli del blocco utensili per la lavorazione.
- Inserti di peso inferiore per le superfici aerodinamiche rispetto ai precedenti in alluminio
Pannello per caravan Hymer
Stampa di parti di prototipi su larga scala
La VisionVenture, creata in collaborazione da BASF e HYMER, è un'anticipazione quasi produttiva del futuro dei furgoni. I pannelli della carrozzeria del prototipo sono stati stampati con la stampante Liquid Crystal Titan.
Pannello per caravan Hymer
Stampa di parti di prototipi su larga scala
La VisionVenture, creata in collaborazione da BASF e HYMER, è un'anticipazione quasi produttiva del futuro dei furgoni. I pannelli della carrozzeria del prototipo sono stati stampati con la stampante Liquid Crystal Titan.
Pannello Hymer
Dettagli di stampa:
Stampante: Liquid Crystal Titan
Dimensioni: 920 (L) x 470 (H) x 600 mm (L)
Tempo di stampa: 40 ore
Risoluzione: 100µm
Volume della resina: 800g
Resina: Nero duro diurno
Costo unitario: € 48,96
Step 1 – Designing for Additive
Although the design supplied by Magna International had taken into account guidelines for AM, design optimization was still needed. The original design would have warped in production but Photocentric was given design freedom on the non-facing surfaces given that we met the external dimensions and were within tolerance on a total of 18 critical measurements. A gyroid infill was added with a 1.2mm by 12mm structure. A design correction for shrinkage of 0.5% in x:y and 0.1% in z was applied to achieve tolerance.
Step 2 – Supporting to achieve part tolerance
The part was orientated at an angle of 60 degrees to negate any sudden changes in force while printing. The support network was generated from the auto support function on Voxel Dance software for Photocentric. Support density was reduced to the minimum necessary to reduce support resin and work in sanding artefacts. Support tips were optimized at 0.6mm to deliver compromise between meeting the minimum level of physical restraint for the part and ease of support removal.
Cut out shapes will distort as the forces change when the open panel is reached. For dimensional accuracy in cut out shapes, you can insert supports or, easier is to insert thin 3mm blanking plates with a few attachment points.
Step 3 – Printing
The material property requirement for the enclosure was met by BASF EPD2006 resin.
The supported file was loaded onto a Liquid Crystal Titan.
The file was printed in 100my layers, taking 68 hours (7223 layers). The part weighed 4591g with 2062g of supports.
Step 4 – Wash process
By the end of the print, the platform had dripped free from excess resin, returning it to the tank. The platform was transferred via the Photocentric platform transfer to the Photocentric Wash XL unit. The door was locked, and the wash pump engaged, and the platform set to continuous rotation. The operator used the wash wand to spray a recirculating solution of Photocentric Resin Cleaner 30 into all areas of the part. Full cleaning took 15 minutes. At the end of the wash cycle, the sump of cleaning fluid was drained back to the IBC of wash fluid and the pump was switched to rinse. The part was rinsed with water to remove all remaining cleaning fluid for 5 mins. As remaining water can leave white marks on the parts, the air wand was applied for a couple of minutes.
Step 5 – Cure process
The platform transfer was then used to move the platform to the Photocentric Cure XL. The platform was rotated continuously to ensure even cure. It was fully post-processed with a combination of dual wavelength (405nm and 460nm) high intensity light and 60°C heat for a total of 5 hours.
Step 6 – Support removal
The fine Voxel Dance support tips were easily ripped off the part leaving minor raised artefacts which were then sanded. Total support removal time was 15 mins.
Step 7 – Adding inserts
We chose to sand the part further for approx. 120 mins, using an orbital sander, in order to get the best surface finish. The required inserts were hammered into the recesses. It was spray painted, with a primer and black coat.
Step 8 – Iterative learning
If you have made a similar type of part before, you will know how accurate the part is to CAD. If you are printing a new complex geometry, there may be variances from tolerance or defects, these are measured and then iteratively improved.
Step 1 – Designing for Additive
Although the design supplied by Magna International had taken into account guidelines for AM, design optimization was still needed. The original design would have warped in production but Photocentric was given design freedom on the non-facing surfaces given that we met the external dimensions and were within tolerance on a total of 18 critical measurements. A gyroid infill was added with a 1.2mm by 12mm structure. A design correction for shrinkage of 0.5% in x:y and 0.1% in z was applied to achieve tolerance.
Step 2 – Supporting to achieve part tolerance
The part was orientated at an angle of 60 degrees to negate any sudden changes in force while printing. The support network was generated from the auto support function on Voxel Dance software for Photocentric. Support density was reduced to the minimum necessary to reduce support resin and work in sanding artefacts. Support tips were optimized at 0.6mm to deliver compromise between meeting the minimum level of physical restraint for the part and ease of support removal.
Cut out shapes will distort as the forces change when the open panel is reached. For dimensional accuracy in cut out shapes, you can insert supports or, easier is to insert thin 3mm blanking plates with a few attachment points.
Step 3 – Printing
The material property requirement for the enclosure was met by BASF EPD2006 resin.
The supported file was loaded onto a Liquid Crystal Titan.
The file was printed in 100my layers, taking 68 hours (7223 layers). The part weighed 4591g with 2062g of supports.
Step 4 – Wash process
By the end of the print, the platform had dripped free from excess resin, returning it to the tank. The platform was transferred via the Photocentric platform transfer to the Photocentric Wash XL unit. The door was locked, and the wash pump engaged, and the platform set to continuous rotation. The operator used the wash wand to spray a recirculating solution of Photocentric Resin Cleaner 30 into all areas of the part. Full cleaning took 15 minutes. At the end of the wash cycle, the sump of cleaning fluid was drained back to the IBC of wash fluid and the pump was switched to rinse. The part was rinsed with water to remove all remaining cleaning fluid for 5 mins. As remaining water can leave white marks on the parts, the air wand was applied for a couple of minutes.
Step 5 – Cure process
The platform transfer was then used to move the platform to the Photocentric Cure XL. The platform was rotated continuously to ensure even cure. It was fully post-processed with a combination of dual wavelength (405nm and 460nm) high intensity light and 60°C heat for a total of 5 hours.
Step 6 – Support removal
The fine Voxel Dance support tips were easily ripped off the part leaving minor raised artefacts which were then sanded. Total support removal time was 15 mins.
Step 7 – Adding inserts
We chose to sand the part further for approx. 120 mins, using an orbital sander, in order to get the best surface finish. The required inserts were hammered into the recesses. It was spray painted, with a primer and black coat.
Step 8 – Iterative learning
If you have made a similar type of part before, you will know how accurate the part is to CAD. If you are printing a new complex geometry, there may be variances from tolerance or defects, these are measured and then iteratively improved.