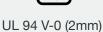


Rigid UVFR


Rigid UVFR is Photocentric's first UV Flame Retardant resin with UL 94 V-0 certification, even showing self-extinguishing properties in the green state. Combined with an exceptionally high HDT and high tensile modulus, it is ideal for 3D parts in industries such as aerospace, automotive and railway. Rigid UVFR is halogen free, has an excellent smoke gas toxicity rating and it is easy to print and process due to its low viscosity. Printed parts exhibit a high level of detail and dimensional accuracy, making it the perfect choice for connectors and fittings for both consumer and industrial applications.

Optimised for:

- Electrical and electronic enclosures and connectors
- Battery housings
- High power electrical applications
- Suitable for interior parts in industries like automotive, aerospace, railway, appliances, medical and furniture.

Unique features:

V-1 (1.5mm)

Incredible heat resistance HDT >250°C

Low viscosity

Printed parts exhibit a superior level of detail and dimensional accuracy

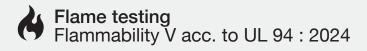
TPO Free

Halogen free with an excellent smoke and toxicity rating

Rigid UVFR Properties

Tensile Properties	Green	UV*		Standard
ensile Modulus	1090 MPa	4170 MPa		ASTM D638
Jltimate Tensile Strength	32.1 MPa	74.7 MPa		ASTM D638
Elongation at break	16%	2.3%		ASTM D638
Flexural Properties		Typical Va	lues (UV*)	Standard
Flexural Modulus		3400 MPa		
Flexural Strength		115 MPa		
mpact Properties		Typical Va	lues (UV*)	Standard
mpact Strength Notched Izod		22 J/m		ASTM D256
Thermal Properties		UV*	UV + Anneal**	Standard
Heat Deflection Temperature (@ 0.45 MPa)	260°C	-	ASTM D648
Heat Deflection Temperature (@ 1.82 MPa)	94°C	>120°C	ASTM D648
Fire Properties		Typical Va	lues (UV*)	Standard
Flammability		V-0 (3.0 mm V-0 (2.5 mm V-0 (2.0 mm V-1 (1.5 mm	n) n)	UL 94
Advanced Thermal Properties		Typical Va	lues (UV*)	Standard
C.T.E (20°C to 60 °C)		74 μm/(m·K)	ASTM E831
C.T.E (60 °C to 120 °C)		112 μm/(m·	K)	ASTM E831
Other		Typical Va	lues (UV*)	Standard
Shore Hardness		92 Shore D		ASTM D2240
Vater Absorption, Short Term (24 hours)		0.43 %		ASTM D570
Vater Absorption, Medium Term (72 hours	s)	0.75 %		ASTM D570
Vater Absorption, Long Term (168 hours)		1.22%		ASTM D570
/iscosity		580 cPs		At 25°C Brookfield spindle 3
iquid Density		1.21 g/cm3		Internal
		J		
Printed Part Density		1.32 g/cm3		Internal

^{*} Post cured for 2 hrs at 60 °C in Photocentric Cure L2.


^{**}Some mechanical and thermal properties can be improved by thermal annealing. Post cured for 2 hrs at 60 °C in Photocentric Cure L2, thermally annealed for 3h at 150 °C.

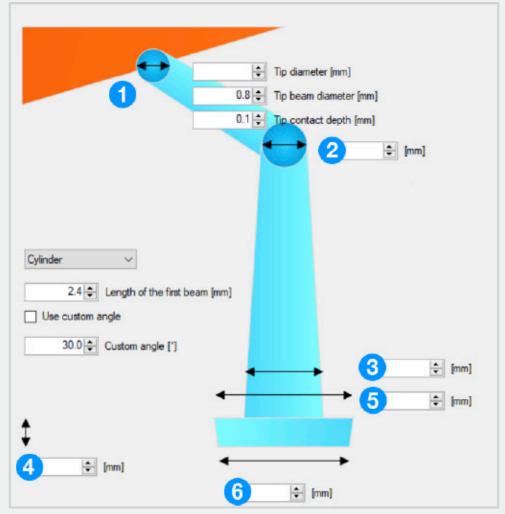
ATLaS-Analytical Testing Lab Service

Job number: ATLaS-2024-6393	Test method: Flammability / UL94-V / 3mm	Receipt date: 05.07.2024 13:47
Responsible processor: Giulia Knopf	Material name: Photocentric Rigid UVFR	Shipment to testing bodies: 27.06.2024
Testing bodies: ATLaS – Analytical Testing Lab Service	Customer: Photocentric Ltd; Titan House, 20 Titan Drive; Peterborough, PE1 5XN; +44 1733 349937	Batch number: TN#334.1

Information about test procedure and test specimens

M 0 0324						Measure	ements & d	observations					
	1st flame application, 10 s 2nd flame application, 10 s					Classification							
Dimensions o 127 * 12,7 * d		ecimens	After flame time	Cotton indicator ignited	Burning up to holding clamp?	Observations	After flame time t2(s)	Cotton indicator ignited	Burning up to holding clamp?	Observations	Afterflame & Afterglow time t2 + t3 (s)	Total Afterflame time t1 + t2 (s)	
Requirements	i		≤ 10 ≤ 30 ≤ 30	no no yes	no no no	- - -	≤ 10 ≤ 30 ≤ 30	no no yes	no no no	- - -	≤ 30 ≤ 60 ≤ 60	≤ 50 ≤ 250 ≤ 250	= V-0 = V-1 = V-2
Pre- conditioning	Spec n°.	Thickn (mm)	Abbrev.:	A=dripping	parts, K=e	dge-burnir	ng, T=drip	ping parts,	R=rolls up				
Conditioning chamber (2d / 23° / 50%)	1 2 3 4 5	2.93 3.09 2.94 2.95 2.89	2 2 2 2 2	No No No No No	No No No No		2 2 2 2 2	No No No No No	No No No No No		2 2 2 2 2	20	V-0
			First tes	t: 2024-07-0	02 13:45 16	:07 - 2024	-07-02 13	3:53					
Drying oven (7d / 70°C)	1 2 3 4 5	2.96 2.99 2.93 2.97 2.96	1 1 2 2 2	No No No No No	No No No No No		2 1 2 2 2	No No No No No	No No No No No		2 1 2 2 2	17	V-0

First test: 2024-07-05 10:05 - 2024-07-05 10:11


Repeated test $\begin{array}{c} \text{V-0 @} \\ \text{3.0 mm} \end{array}$

Design & Print Orientation Consideration Parameters

Printed on Photocentric LC Opus (100 µm layer height)

Properties	Parameters
Minimum feature size (pins)	0.5 mm
Minimum hole diameter	0.8 mm
Minimum slot thickness	0.6 mm
Minimum wall thickness	0.4 mm
Overhangs	Successful for overhangs < 60°
Delamination (unsupported)	Not visible for overhangs ≤ 2 mm
Delamination (between walls)	Not visible for overhangs ≤ 4 mm

These are recommended support settings in relation to a UV LCD printer with $81\mu m$ XY resolution.

Large Models

Small Models

Diagram Ref. Nr	Parameters	Values	Parameters	Values
-	Density (%)	70	Density (%)	70
1	Tip Diameter (mm)	0.8	Tip Diameter (mm)	0.8
-	Critical Build Angle (°)	47	Critical Build Angle (°)	47
2	Pole Diameter (mm)	2	Pole Diameter (mm)	2
3	Pole Widening Factor	1.5	Pole Widening Factor	1.5
-	Model Height from Base (mm)	10	Model Height from Base (mm)	10
4	Height of Support Foot (mm)	2	Height of Support Foot (mm)	2
5	Top of Foot Diameter (mm)	7	Top of Foot Diameter (mm)	7
6	Bottom of Foot Diameter (mm)	5	Bottom of Foot Diameter (mm)	5

Recommended orientation around all axes is 45 $^{\circ}$.

Printer and Resin Profilling

Photocentric UV Printers

To print with Photocentric UV printers, choose Rigid UVFR (Black) and the desired layer thickness when preparing your print file in Photocentric Studio.

3rd Party UV Printers

- Photocentric UV high-performance resins have been formulated to be compatible with a wide range of 3rd
 Party Printers. This list is continually updated, for the most up-to-date information, please visit our UV Resin
 Compatibility Page. All resins are functional at a wavelength of 385-405 nm.
- Please see below instruction on how to calculate appropriate exposure time with regards to your 3rd party UV printer and purchased resin.

Layer Exposure Guidelines

This guide will assist you in establishing a layer exposure time for a desired resin and layer thickness based on the characteristics of Photocentric's UV Resin range and your UV 3D printer.

Each resin requires a specific energy (Ec) to cure a certain layer thickness (Dp). 'Energy' is defined by multiplying 'light output intensity' of your printer and a 'given time of exposure'. The equation below simply explains the matter.

Energy [mJ/cm²]= Light Output Intensity [mW/cm²] x Exposure Time [s]

Your UV 3D printer manufacturer will provide you with light output intensity value.

Layer Thickness (µm)	25	50	100
A UV 3D printer with 5mW/cm2 light output intensity	-	-	4 sec
Ec (mJ/cm2)		19	
Dp (μm)		140	

Bear in mind the exposure time vs energy is not a linear trend, and this data is intended strictly as a guideline. Settings may need to be further optimised to suit each printer.

Pre-Print Instructions

- 1. To print on Photocentric LC Opus, choose Rigid UVFR (Black) and the desired layer thickness when preparing the print file in Photocentric Studio.
- 2. Warm the resin to 60 °C for 5 hours, or until the resin is fully liquified in the bottle. Failure to do so prior to printing may lead to the resin crystalising, resulting in print failures.
- 3. Shake the resin bottle for up to 2 minutes before pouring into the printer vat. Allow to cool to 30°C prior to printing.

Post-Print Instructions

- 1. It is recommended to drain and clean the vat after printing if ambient temperatures are below 23 °C.
- 2. Place the platform into the Photocentric Wash 15 unit, and wash printed parts for up to 10 minutes in Photocentric Resin Cleaner 30.
- 3. Rinse printed parts thoroughly in warm water for up to 2 minutes.
- 4. Dry well with compressed air to remove any remaining water. Alternatively, leave to dry naturally until no water is present.
- 5. Cure for 2 hours at 60 °C in Cure M+.
- 6. Parts can be thermally shocked from the platform using very cold water when the platform is still warm from the curing process.

Thermal Annealing

To thermally anneal printed parts, place them on a suitable tray in a thermal oven using the following procedure:

Thermal Oven

Ramp-up Phase	2 hours	30°C to 150°C (1°C/min)
Holding Phase	3 hours	150°C
Ramp-down Phase	2 hours	150°C to 30°C (1°C/min)

