

Technical Datasheet

Rigid UV240 **Plant-Based**

Print sample, Volume knob &

Rigid DL240 Plant-Based is a high-performance rigid 3D printing resin which consists of 50% bio-based raw materials, offering a substantial reduction on net CO₂ emission compared to conventional resins. It is remarkably easy to handle and process, along with exhibiting outstanding properties.

Rigid DL240 Plant-Based have high accuracy, with over 98% of scanned data within +/- 100µm for dental models printed horizontally and over 90% of scanned data within +/- 100µm for dental models printed vertically, increasing output for overnight production*. It enables quick design iterations by offering 250 and 350µm layer thickness print profiles.

*Printed with Photocentric Liquid Crystal Opus

Optimised for: • Fast & Accurate Prototyping

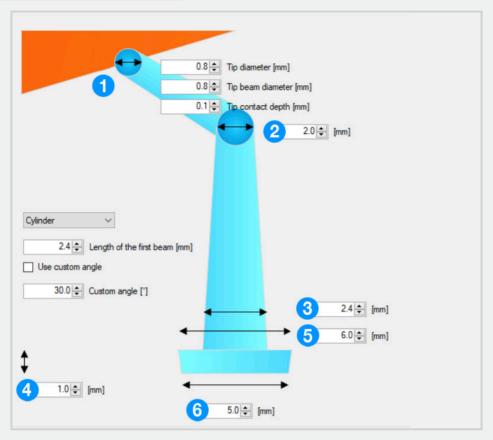
Dental Models for Aligner manufacturing

Unique features:

from plant-based materials

Rigid UV240 Plant-Based Properties

Tensile Properites	Green	Post-Cured	Method	
Tensile Modulus	851 MPa	2080 MPa	ASTM D638	
Tensile Strength (Break)	19.7 MPa	52 MPa	ASTM D638	
Tensile Strength (Yield)	19.7 MPa	54 MPa	ASTM D638	
Elongation at Break	17.1%	5.4%	ASTM D638	
Flexural Properties				
Flexural Strength	-	108 MPa	ASTM D790	
Flexural Modulus	-	2656 MPa	ASTM D790	
Impact Properties				
Impact Strength Notched Izod	-	12.2 J/m	ASTM D256	
Impact Strength Notched Izod	-	2.2 kJ/m2	ISO 180	
General Properties				
Shore Hardness	-	84 Shore D	ASTM D2240	
HDT (@ 0.455 MPa)	-	78.4°C	ASTM D648	
HDT (@ 1.82 MPa)		62.6°C	ASTM D648	
Water absorption (%)* after 24 hrs	-	0.470%	ASTM D570	
Water absorption (%)* after 72 hrs	-	0.625%	ASTM D570	
Water absorption (%)* after 7 days	-	0.933%	ASTM D570	
Liquid Properties	Value	Method		
Viscosity	580 cPs	At 25°C Brookfield	At 25°C Brookfield spindle 3	
Density	1.10 g/cm ³	-		
	3,			


^{*} Post cured for 2 hours at 60°C with Photocentric Cure M+

Design & Print Orientation Consideration Parameters

These are example parameters in relation to a UV LCD Printer with $81\mu m$ XY resolution

Properties	Parameters
Minimum feature size (pins)	0.2mm
Minimum hole diameter	0.4mm
Minimum slot thickness	0.4mm
Minimum wall thickness	0.3mm
Overhangs	Successful for overhangs ≤15°
Round Dim Fit	Parts fit with no resistance at 0.09mm offset Click to view sample
Square Dim Fit	Parts fit perfectly with no resistance at 0.06mm offset Click to view sample
Minimum wall thickness unsupported	Minimum wall thickness unsupported is 1mm with maximum height of 100mm.
Scaling factor	X 0.6% Y0.6% Z+0.7%

These are recommended support settings in relation to a UV LCD printer with $81\mu m$ XY resolution.

	Large Models		Small Models	
Diagram Ref. Nr	Parameters	Values	Parameters	Values
-	Denisty (%)	60	Denisty (%)	60
1	Tip Diameter (mm)	0.8	Tip Diameter (mm)	0.6
-	Critical Build Angle (°)	47	Critical Build Angle (°)	47
2	Pole Diameter (mm)	2	Pole Diameter (mm)	1.5
3	Pole Widening Factor	1.5	Pole Widening Factor	1.5
-	Model Height from Base (mm)	10	Model Height from Base (mm)	10
4	Height of Support Foot (mm)	2	Height of Support Foot (mm)	2
5	Top of Foot Diameter (mm)	5	Top of Foot Diameter (mm)	5
6	Bottom of Foot Diameter (mm)	3	Bottom of Foot Diameter (mm)	3

[•] Recommended orientation around all axes is 45°.

Photocentric UV Printers

To print with Photocentric UV printers, choose 'Rigid UV240Bio" and the desired layer thickness when preparing your print file in Photocentric Studio.

3rd Party UV Printers

- Photocentric UV high-performance resins have been formulated to be compatible with a wide range of 3rd
 Party Printers. This list is continually updated, for the most up-to-date information, please visit our UV Resin
 Compatibility Page. All resins are functional at a wavelength of 385-405 nm.
- Please see below instruction on how to calculate appropriate exposure time with regards to your 3rd party
 UV printer and purchased resin

This guide will assist you in establishing a layer exposure time for a desired resin and layer thickness based on the characteristics of Photocentric's UV Resin range and your UV 3D printer.

Each resin requires a specific energy to cure a certain layer thickness. 'Energy' is defined by multiplying 'light output intensity' of your printer and a 'given time of exposure'. The equation below simply explains the matter.

Energy [mJ/cm²]= Light Output Intensity [mW/cm²] x Exposure Time [s]

Your UV 3D printer manufacturer will provide you with light output intensity value.

Layer Thickness (µm)	25	50	100
A UV 3D printer with 5mW/cm2 light output intensity	-	-	3.3 sec
Ec(mJ/cm2)	13.31		
Dp(mm)	200		

Bear in mind the exposure time vs energy is not a linear trend, and this data is intended strictly as a guideline. Settings may need to be further optimised to suit each printer.

Pre-Print Instructions

- 1. Heat the resin to 30°C in the bottle.
- 2. Shake the resin bottle for 2 minutes before pouring into the resin vat.

Post-Print Instructions

To reach the full mechanical properties of the material, parts printed using 'Rigid UV240Bio' resin will need to be post-processed.

- 1. Remove the print platform from the printer and place in to the wash unit. You can use 'Photocentric Wash15' or 'Photocentric Air Wash L' as Wash units.
- 2. Follow resin cleaner/solvent TDS for relevant wash cycles. You can use 'Photocentric Resin Cleaner's as the cleaning mediums. For 'Photocentric Resin Cleaner 30' washing cycle is 10 minutes.
- 3. Make sure you do not exceed the recommended wash cycles as it might have adverse effect on the mechanical properties.
- 4. Rinse parts with warm water for 1-2 minutes.
- 5. Where possible, use compressed air to dry the parts, if not, leave them to dry naturally.
- 6. The parts printed can be cured in any UV post-curing unit. You can use 'Photocentric Cure M+' for 1-2 hours at 60°C depending on the size of parts.
 - If only 'dry to touch' finish is required, for example for dental models, 30 minutes post curing should be adequate.
- 7. Remove the platform from the Cure M+ and immediately leave it for 2 minutes under running cold water below 14°C for thermal shocking. Parts can be removed from the platform with minimal effort.

